Knowledge Graph Embedding via Dynamic Mapping Matrix

نویسندگان

  • Guoliang Ji
  • Shizhu He
  • Liheng Xu
  • Kang Liu
  • Jun Zhao
چکیده

Knowledge graphs are useful resources for numerous AI applications, but they are far from completeness. Previous work such as TransE, TransH and TransR/CTransR regard a relation as translation from head entity to tail entity and the CTransR achieves state-of-the-art performance. In this paper, we propose a more fine-grained model named TransD, which is an improvement of TransR/CTransR. In TransD, we use two vectors to represent a named symbol object (entity and relation). The first one represents the meaning of a(n) entity (relation), the other one is used to construct mapping matrix dynamically. Compared with TransR/CTransR, TransD not only considers the diversity of relations, but also entities. TransD has less parameters and has no matrix-vector multiplication operations, which makes it can be applied on large scale graphs. In Experiments, we evaluate our model on two typical tasks including triplets classification and link prediction. Evaluation results show that our approach outperforms stateof-the-art methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient semantic indexing via neural networks with dynamic supervised feedback

We describe a portable system for e cient semantic indexing of documents via neural networks with dynamic supervised feedback. We initially represent each document as a modified TF-IDF sparse vector and then apply a learned mapping to a compact embedding space. This mapping is produced by a shallow neural network which learns a latent representation for the textual graph linking words to nearby...

متن کامل

Transition-based Knowledge Graph Embedding with Relational Mapping Properties

Many knowledge repositories nowadays contain billions of triplets, i.e. (head-entity, relationship, tail-entity), as relation instances. These triplets form a directed graph with entities as nodes and relationships as edges. However, this kind of symbolic and discrete storage structure makes it difficult for us to exploit the knowledge to enhance other intelligenceacquired applications (e.g. th...

متن کامل

Segmentation via Graph-Spectral Methods and Riemannian Geometry

In this paper, we describe the use of graph-spectral techniques and their relationship to Riemannian geometry for the purposes of segmentation and grouping. We pose the problem of segmenting a set of tokens as that of partitioning the set of nodes in a graph whose edge weights are given by the geodesic distances between points in a manifold. To do this, we commence by explaining the relationshi...

متن کامل

Spectral functions of strongly correlated extended systems via an exact quantum embedding

Density matrix embedding theory (DMET) [Phys. Rev. Lett. 109, 186404 (2012)], introduced an approach to quantum cluster embedding methods whereby the mapping of strongly correlated bulk problems to an impurity with finite set of bath states was rigorously formulated to exactly reproduce the entanglement of the ground state. The formalism provided similar physics to dynamical mean-field theory a...

متن کامل

Enhancing Network Embedding with Auxiliary Information: An Explicit Matrix Factorization Perspective

Recent advances in language modeling such as word2vec motivate a number of graph embedding approaches by treating random walk sequences as sentences to encode structural proximity in a graph. However, most of the existing principles of neural graph embedding do not incorporate auxiliary information such as node content flexibly. In this paper we take a matrix factorization perspective of graph ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015